第九章 神经元网络方法及其 应用举例

Questions: what can-do or can-not-do of a von Neumann machine?

Good at	Not so good at
Fast arithmetic	Interacting with noisy data or data from the environment
Doing precisely what the programmer programs them to do	Massive parallelism
	Fault tolerance
	Adapting to circumstances

Where can ANN systems or "Brain" help?

- where we can't formulate an algorithmic solution.
- where we can get lots of examples of the behaviour we require, 大样本训练
- where we need to pick out the structure from existing data.
 - e.g. Pattern recognition (recognizing handwritten characters?)

无数学模型描述的复杂系统识别, YES or NOT?

<u>Tevatron</u>: Fermilab Proton-Antiproton Collider

Batavia, Illinois

DØ Detector

A Schematic Hadron Collider Detector

The DØ Runl I Detector

Retained from Run I:

- [•]U/LAr Calorimeter
- Central Muon Detectors
- Muon Toroid

New for Run II:

- Magnetic Tracker: SMT, CFT, 2T Solenoid
- Preshower
- Forward Muon
- Trigger & DAQ

Vertex & Central Tracking

1. Silicon Microvertex Tracker : ~ $10\mu m$ (design) 2. Central Fiber Tracker: scintillator fiber

The Calorimeter

- Liquid Argon sampling
 - ✓ Stable, uniform response
 - ✓ LAr purity
- Uranium absorber (Cu/Fe for coarse hadronic)
 - \checkmark dense absorber hence can be compact
 - ✓ Compensated EM and hadronic response
 - ✓ Linear response
- Hermetic with full coverage
 - ✓ $|\eta| < 4.2 \ (\theta \approx 2^{\circ})$

Resolution:

σ/E ~ 15%/ E(GeV) "fine" EM 50%/ E(GeV) "coarse" jet

 $\sigma_{MET} \sim a + b^* S_T + c^* S_T^2$

(run1)

 S_T scalar sum of ET a ~1.89GeV, b ~6.7E-3, c ~9.9E-6/GeV

Muon Detector

What we can "see"?

人脑:学习与经验主义

Neural networks are a form of multiprocessor computer system, with

- simple processing elements
- a high degree of interconnection
- simple scalar messages
- adaptive interaction between elements

-2

2

-4

学习:

- 正向计算y_i, E
- 反向调节w_{ii},t_i, ie Back-Propagated (BP)
- 直至E最小

- 权重
$$W_0, W_1$$
,阈 W_b
 $a=W_0 * I_0 + W_1 * I_1 + W_b$

- 激发函数: step function y=1 a>0 0 a<=0
- 真值(训练目标) A = I₀ OR I₁

<u>反向传播网络训练Back-Propagated (BP)</u>

- 0. 极值原理:误差函数E最小→gradient descent
- 1.输出层→隐藏层:

2.隐藏层→输入层:

$$\frac{\partial E}{\partial w_{kj}} = \sum_{P} \sum_{i} \delta_{i} g'(\tilde{a}_{i}) \widetilde{w}_{ji} g'(a_{j}) x_{k} = \sum_{P} \delta'_{j} g'(a_{j}) x_{k}$$

$$W_{kj} + = -\eta \frac{\partial E}{\partial W_{kj}} \to 0$$

<u>学习强度η (Learning Rate)</u>

If too small, long time to converge

If too large, cause the algorithm to diverge, an overflow error in the computer's floatingpoint arithmetic

[0.001,0.5],先大后小

<u>summary</u>

- <u>真值A</u>_i==true || false
- 输入→隐含层→输出
- 输入与权重 $a_i = W_{ij}^* x_j$
- 激发函数与输出 $y_i = g(a_i)$, 强制性是非选择与放大
- 真值比较 → 反向传播 → 误差梯度递减调节 → 固定w_{ii}

<u>高能强子对撞中的τ鉴别</u>

3 generations of quarks
3 generations of leptons
4 3 types of interactions

Electromagnetic γ
Weak W/Z
Strong g

真空对称性自发破缺

<u>基本粒子与探测</u>

<u>强子谱(1):</u>

- gluon胶子 :m==0 g → qqbar/gg
- up, down夸克:m~1MeV, π介子, η,ρ,φ,ω …etc,etc π[±], cτ = 8m π⁰→2γ, Br~100%
- strange夸克:m~100MeV, K介子 K[±], cτ = 4m K⁰-K⁰bar mixing → K_L-K_s CP-violation

- charm夸克:m~1GeV D介子, 不稳定 ccbar→J/ψ(1S)→μμ, Br~6%

PV(primary Vertex)~25µm

2次顶点判选 & 电荷中心法 ± 1/3 etc ~ 50% efficiency

- top夸克:m~180GeV, Γ ~ 3GeV, **寿命极短,不强子化** t → b + W (semi-lepton decay lv, l=e,μ) ~ ~100% (10%)

<u>轻子谱(1):</u>

- 中微子 v_e , v_{μ} , v_{τ} : m~0, weak interaction \rightarrow missing transverse energy

- 电子e: m~0.511MeV, stable strong bremsstrahlung in high Z material → compact in Calorimeter, ie lose most energy in Cone 0.2 cut on isolation, em-fraction, shower shape hmatrix
- μ : m~113MeV, cτ=658m

Track + MIP in Calorimeter + penetrate out-most Muon chamber

<u>轻子谱(2):</u>

- τ : m~1.776GeV, $c\tau$ =90 μ m

tau ->
$$| \nabla_{\nu} v$$
 ($| = e, \mu$) ~17.5%
h⁻ v + neutral ~50%
h⁻ h⁺ h⁺ v + neutral ~15% -> ρ -"3-prong"

<u>1-prong problem:</u>

- 1 track, no 2nd Vertex reconstruction
- 50% hadron jet, a little more compact and isolated than initial quark/gluon jet ...but how to describe, Cone 0.4, 0.5 or 0.7?

Challenge to id hadronic tau decay on hadron collider!

Di-tau study: light Higgs decay

<u>高能强子对撞中ANN-τ鉴别</u>

<u> 输入变量:</u>

- *profile* = ET Tower(1+2)/ETtot (i.e. broader than electron)
- *trkiso* = PT of tracks, excl the τ 1-prong, in Cone0.7
- Et/pt, ringiso, e1e2, dalpha, EM12fr etc

<u>真值比较:</u>

- MC : signal $\tau \rightarrow \pi^{\pm} \nu, \pi^{\pm} \pi^{0} \nu$ vs. q/g/b jet background
- data : signal Z $\rightarrow \tau \tau \rightarrow e/\mu + h$, cuts as $E_T(I)>12$, M(Ih)<60, df>2.5, unlike-sign(I*h) background all selections except like-signal instead

Tuning the w-est variable :

$$\sigma(Z\tau\tau, \pi$$
-type) = 235 ± 137 pb
 $\sigma(Z\tau\tau, \rho$ -type) = 222 ± 71 pb
 $\sigma(Z\mu\mu) = 261.8 \pm 5.0 \pm 8.9 \pm 26.2$ pb

- No way from MC \rightarrow fast MC ID, but a *substitute* - ANN gives the best result of $Z\tau\tau \pi$ -type
 - as calibration with efficiency ~ 80%

track

- double lifetime information by sumDCA of di-tau , might help

A way to use lifetime for tau id?

- sumDCA>>resolution, should discriminate from no-lifetime di-track system.
- ANN is the only choice to model, "exaggerate" and tune the cut